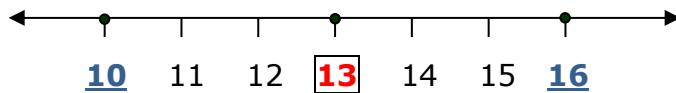


# Ch nn – MIDPOINT ON THE LINE AND IN THE PLANE

## □ MIDPOINT ON THE LINE

Here's a question for you: What number is *midway* between 10 and 16? You probably know that the number is 13. Why? Because 13 is 3 units away from 10, and 13 is also 3 units away from 16.



Now we need a simple way to find the number that is midway between any two numbers, even when the numbers are not nice, or worse yet, when there are variables involved. Notice this: If we take the **average** (officially called the *arithmetic mean*) of 10 and 16 — by adding the two numbers and dividing by 2 — we get

$$\frac{10+16}{2} = \frac{26}{2} = 13, \text{ the midway number}$$

Let's rephrase what we've done with some new terminology. Consider the *line segment* connecting 10 and 16 on the number line:



We can now refer to the 13 as the **midpoint** of the line segment connecting 10 and 16.

What is the *midpoint* of the line segment connecting  $-2.8$  and  $14.6$ ? Just calculate the average of  $-2.8$  and  $14.6$ :

$$\frac{-2.8+14.6}{2} = \frac{11.8}{2} = 5.9$$

When you see the term **midpoint**, think *average*!

# Homework

1. Find the **midpoint** of the line segment connecting the two given numbers on a number line:

|                |               |                     |
|----------------|---------------|---------------------|
| a. 10 and 20   | b. 13 and 22  | c. -8 and -26       |
| d. -3 and 7    | e. -7 and 6   | f. $\pi$ and $-\pi$ |
| g. -21 and -99 | h. 0 and 43   | i. -50 and 0        |
| j. -44 and 19  | k. -41 and 88 | l. $3x$ and $-x$    |

## □ **MIDPOINT IN THE PLANE**

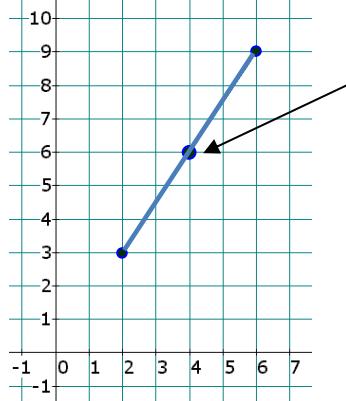
Now for the more important question: Consider the two points  $(2, 3)$  and  $(6, 9)$  in the plane and the line segment that connects them. We need to figure out what point is the *midpoint* of the line segment connecting the two points. Recall the advice given above: When you see midpoint, think *average*. So the  $x$ -coordinate of the midpoint is the average of the  $x$ -coordinates of the two endpoints:

$$x = \frac{2+6}{2} = \frac{8}{2} = 4$$

And the  $y$ -coordinate of the midpoint is the average of the  $y$ -coordinates of the two endpoints:

$$y = \frac{3+9}{2} = \frac{12}{2} = 6$$

We conclude that the midpoint is  $(4, 6)$ . That's all there is to it. Now let's do a complete example without plotting any points or drawing any segments.



The **midpoint** is found by averaging the  $x$ -coordinates and then averaging the  $y$ -coordinates.

**EXAMPLE 1:** Find the midpoint of the line segment connecting the points  $(-42, -33)$  and  $(90, -10)$ .

**Solution:** No graphing needed — we have a formula. The  $x$ -coordinate of the midpoint is found by averaging the  $x$ -coordinates of the two given points:

$$x = \frac{-42 + 90}{2} = \frac{48}{2} = 24$$

The  $y$ -coordinate of the midpoint is found by averaging the  $y$ -coordinates of the two given points:

$$y = \frac{-33 + (-10)}{2} = \frac{-43}{2} = -\frac{43}{2}$$

The midpoint is therefore the point

$$\left(24, -\frac{43}{2}\right)$$

or,  $(24, -21.5)$

## Homework

2. Find the **midpoint** of the line segment connecting the given pair of points:
 

|                                                                                                                                                                                                                               |                                                                                                                                                                                                                 |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| a. $(-2, 5)$ and $(2, 7)$<br>c. $(-5, 8)$ and $(-5, -8)$<br>e. $(-9, 2)$ and $(-13, -40)$<br>g. $(5, 4)$ and $(5, 4)$<br>i. $(8, 8)$ and $(-19, -19)$<br>k. $(0, \sqrt{2})$ and $(0, -\sqrt{2})$<br>m. $(a, b)$ and $(a, -b)$ | b. $(0, 1)$ and $(0, 6)$<br>d. $(-2, 7)$ and $(5, -3)$<br>f. $(0, 0)$ and $(-6, -9)$<br>h. $(14, 0)$ and $(0, -9)$<br>j. $(\pi, 0)$ and $(-\pi, 0)$<br>l. $(a, b)$ and $(c, d)$<br>n. $(3a, 3b)$ and $(-3a, b)$ |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|

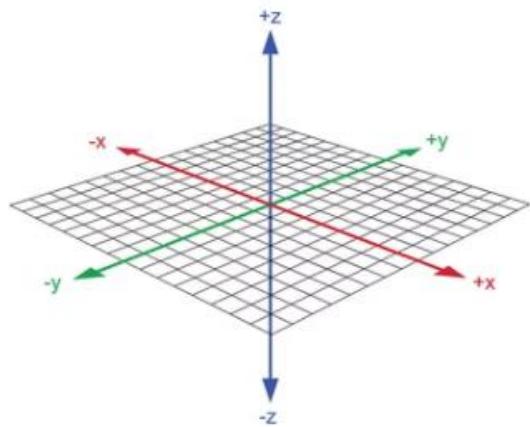
□ **TO  $\infty$  AND BEYOND**

A point on a 1-dimensional line can be described by a single number, for example, 7.

A point in a 2-dimensional plane can be described by an ordered pair, for example,  $(2, -9)$ .

A point in 3-dimensional space (which has an  $x$ -axis, a  $y$ -axis, and a  $z$ -axis), can be described by an ordered triple, for example  $(1, -5, 12)$ .

Find the **midpoint** of the line segment connecting the points  $(2, -3, 7)$  and  $(-5, 17, 20)$ .




---

## Solutions

---

|                |         |        |                 |                                                |        |
|----------------|---------|--------|-----------------|------------------------------------------------|--------|
| 1. a. 15       | b. 17.5 | c. -17 | d. 2            | e. -0.5                                        | f. 0   |
| g. -60         | h. 21.5 | i. -25 | j. -25          | k. 23.5                                        | l. $x$ |
| 2. a. $(0, 6)$ |         |        | b. $(0, 7/2)$   | c. $(-5, 0)$                                   |        |
| d. $(3/2, 2)$  |         |        | e. $(-11, -19)$ | f. $(-3, -9/2)$                                |        |
| g. $(5, 4)$    |         |        | h. $(7, -9/2)$  | i. $(-11/2, -11/2)$                            |        |
| j. $(0, 0)$    |         |        | k. $(0, 0)$     | l. $\left(\frac{a+c}{2}, \frac{b+d}{2}\right)$ |        |
| m. $(a, 0)$    |         |        | n. $(0, 2b)$    |                                                |        |

“What sculpture is to a block of marble,  
education is to the human soul.”

**Joseph Addison**

